Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 2): 118821, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38615793

RESUMEN

How microzooplanktonic ciliate adaptative strategies differ across diatom bloom and non-diatom bloom areas in the Arctic Ocean remains poorly documented. To address this gap, two different situations were categorized in the Arctic Ocean at summer 2023: diatom bloom stations (DBS) (genus Thalassiosira, chain-like) and non-diatom bloom stations (nDBS). Total abundance of ciliate at 3 m and 25 m in DBS was 2.8 and 1.8 folds higher than in nDBS, respectively. Aloricate ciliates were singled out in both DBS and nDBS, whilst their average abundance and biomass of large size-fraction (>50 µm) in former were 4.5-5.6 folds higher than in latter. Regarding tintinnids, high abundance of Ptychocylis acuta (Bering Strait species) mainly occurred at DBS, coupled with distribution of co-occurring Pacific-origin species Salpingella sp.1, collectively suggested a strong intrusion of Pacific Inflow during summer 2023. Additionally, presence of high abundance of Acanthostomella norvegica and genus Parafavella in nDBS might indicate the trajectory of the Transpolar Drift. Alternatively, tintinnids can serve as credible bioindicators for either monitoring currents or evaluating microzooplankton Borealization. Average abundance of total ciliate within 15-135 µm body-size spectrum in DBS was higher than nDBS. Moreover, spearman's rank correlation between biotic and abiotic analysis revealed that temperature and dissolved oxygen at DBS determined tintinnid species richness and ciliate total abundance, respectively. The results clearly demonstrate that remarkable divergences in large size-fraction of ciliate abundance between DBS and nDBS validate their irreplaceable role in controlling phytoplankton outbreak and associated biological processes in polar seas.

2.
ACS Nano ; 18(6): 5003-5016, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38294411

RESUMEN

The cycling stability of a thin zinc anode under high zinc utilization has a critical impact on the overall energy density and practical lifetime of zinc ion batteries. In this study, an ion sieve protection layer (ZnSnF@Zn) was constructed in situ on the surface of a zinc anode by chemical replacement. The ion sieve facilitated the transport and desolvation of zinc ions at the anode/electrolyte interface, reduced the zinc deposition overpotential, and inhibited side reactions. Under a 50% zinc utilization, the symmetrical battery with this protection layer maintained stable cycling for 250 h at 30 mA cm-2. Matched with high-load self-supported vanadium-based cathodes (18-20 mg cm-2), the coin battery with 50% zinc utilization possessed an energy density retention of 94.3% after 1000 cycles at 20 mA cm-2. Furthermore, the assembled pouch battery delivered a whole energy density of 61.3 Wh kg-1, surpassing the highest mass energy density among reported mild zinc batteries, and retained 76.7% of the energy density and 85.3% (0.53 Ah) of the capacity after 300 cycles.

3.
J Chem Phys ; 159(20)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38010325

RESUMEN

Transition state calculation is a critical technique to understand and predict versatile dynamical phenomena in solids. However, the transition state results obtained at 0 K are often utilized for the prediction or interpretation of dynamical processes at high temperatures, and the error bars of such an approximation are largely unknown. In this benchmark study, all the major temperature effects, including lattice expansion, lattice vibration, electron excitation, and band-edge shift, are evaluated with first-principles calculations for defect diffusion in solids. With the inclusion of these temperature effects, the notable discrepancies between theoretical predictions at 0 K and the experimental diffusivities at high temperatures are dramatically reduced. In particular, we find that lattice expansion and lattice vibration are the dominant factors lowering the defect formation energies and hopping barriers at high temperatures, but the electron excitation exhibits minor effects. In sharp contrast to typical assumptions, the attempt frequency with lattice expansion and vibration varies significantly with materials: several THz for aluminum bulk but surprisingly over 500 THz for 4H-SiC. For defects in semiconductors, the band-edge shift is also significant at high temperatures and plays a vital role in defect diffusion. We expect that this study would help accurately predict the dynamical processes at high temperatures.

4.
ACS Appl Mater Interfaces ; 15(40): 47135-47144, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37782682

RESUMEN

Searching for electrocatalysts for the electrochemical CO2 reduction reaction (e-CO2RR) with high selectivity and stability remains a significant challenge. In this study, we design a Cu-CuInO2 composite with stable states of Cu0/Cu+ by electrochemically depositing indium onto CuCl-decorated Cu foil. The catalyst displays superior selectivity toward the CO product, with a maximal Faraday efficiency of 89% at -0.9 V vs the reversible hydrogen electrode, and maintains impressive stability up to 27 h with a retention rate of >76% in Faraday efficiency. Our systematical characterizations reveal that the catalyst's high performance is attributed to CuInO2 nanoparticles. First-principles calculations further confirm that CuInO2(012) is more conducive to CO generation than Cu(111) under applied potential and presents a higher energy barrier than Cu(111) for the hydrogen evolution reaction. These theoretical predictions are consistent with our experimental observations, suggesting that CuInO2 nanoparticles offer a facile catalyst with a high selectivity and stability for e-CO2RR.

5.
Adv Sci (Weinh) ; 10(36): e2305414, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37875394

RESUMEN

Although hard carbon (HC) demonstrates superior initial Coulombic efficiency, cycling durability, and rate capability in ether-based electrolytes compared to ester-based electrolytes for sodium-ion batteries (SIBs), the underlying mechanisms responsible for these disparities remain largely unexplored. Herein, ex situ electron paramagnetic resonance (EPR) spectra and in situ Raman spectroscopy are combined to investigate the Na storage mechanism of HC under different electrolytes. Through deconvolving the EPR signals of Na in HC, quasi-metallic-Na is successfully differentiated from adsorbed-Na. By monitoring the evolution of different Na species during the charging/discharging process, it is found that the initial adsorbed-Na in HC with ether-based electrolytes can be effectively transformed into intercalated-Na in the plateau region. However, this transformation is obstructed in ester-based electrolytes, leading to the predominant storage of Na in HC as adsorbed-Na and pore-filled-Na. Furthermore, the intercalated-Na in HC within the ether-based electrolytes contributes to the formation of a uniform, dense, and stable solid-electrolyte interphase (SEI) film and eventually enhances the electrochemical performance of HC. This work successfully deciphers the electrolyte-dominated Na+ storage mechanisms in HC and provides fundamental insights into the industrialization of HC in SIBs.

6.
Nano Lett ; 23(16): 7642-7649, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37552808

RESUMEN

Attaining high reversibility of the electrodes and electrolyte is essential for the longevity of secondary batteries. Rechargeable zinc-air batteries (RZABs), however, encounter drastic irreversible changes in the zinc anodes and air cathodes during cycling. To uncover the mechanisms of reversibility loss in RZABs, we investigate the evolution of the zinc anode, alkaline electrolyte, and air electrode through experiments and first-principles calculations. Morphology diagrams of zinc anodes under versatile operating conditions reveal that the nanosized mossy zinc dominates the later cycling stage. Such anodic change is induced by the increased zincate concentration due to hydrogen evolution, which is catalyzed by the mossy structure and results in oxide passivation on electrodes and eventually leads to low true Coulombic efficiencies and short life spans of batteries. Inspired by these findings, we finally present a novel overcharge-cycling protocol to compensate for the Coulombic efficiency loss caused by hydrogen evolution and significantly extend the battery life.

7.
Adv Mater ; : e2306962, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652747

RESUMEN

Elemental 2D materials (E2DMs) have been attracting considerable attention owing to their chemical simplicity and excellent/exotic properties. However, the lack of robust chemical synthetic methods seriously limits their potential. Here, a surfactant-free liquid-phase synthesis of high-quality 2D tellurium is reported based on ultrasonication-assisted exfoliation of metastable 1T'-MoTe2 . The as-grown 2D tellurium nanosheets exhibit excellent single crystallinity, ideal 2D morphology, surfactant-free surface, and negligible 1D by-products. Furthermore, a unique growth mechanism based on the atomic escape of Te atoms from metastable transition metal dichalcogenides and guided 2D growth in the liquid phase is proposed and verified. 2D tellurium-based field-effect transistors show ultrahigh hole mobility exceeding 1000 cm2  V-1  s-1 at room temperature attributing to the high crystallinity and surfactant-free surface, and exceptional chemical and operational stability using both solid-state dielectric and liquid-state electrical double layer. The facile ultrasonication-assisted synthesis of high-quality 2D tellurium paves the way for further exploration of E2DMs and expands the scope of liquid-phase exfoliation (LPE) methodology toward the controlled wet-chemical synthesis of functional nanomaterials.

8.
Small ; 19(40): e2303005, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37269202

RESUMEN

A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long-duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition. It begins with alloying the foam with Zn to form Cu5 Zn8 , whose depth is controlled to retain the large pores for a hydraulic permeability ≈10-11  m2 . Dealloying follows to create nanoscale pores and abundant fine pits below 10 nm, where Zn can nucleate preferentially due to the Gibbs-Thomson effect, as supported by a density functional theory simulation. Morphological evolution monitored by in situ microscopy confirms uniform Zn deposition. The electrode delivers 200 h of stable cycles in a Zn-I2 flow battery at 60 mAh cm-2 and 60 mA cm-2 , performance that meets practical demands.

9.
Nature ; 620(7974): 545-551, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37224876

RESUMEN

Doping of perovskite semiconductors1 and passivation of their grain boundaries2 remain challenging but essential for advancing high-efficiency perovskite solar cells. Particularly, it is crucial to build perovskite/indium tin oxide (ITO) Schottky contact based inverted devices without predepositing a layer of hole-transport material3-5. Here we report a dimethylacridine-based molecular doping process used to construct a well-matched p-perovskite/ITO contact, along with all-round passivation of grain boundaries, achieving a certified power conversion efficiency (PCE) of 25.39%. The molecules are shown to be extruded from the precursor solution to the grain boundaries and the bottom of the film surface in the chlorobenzene-quenched crystallization process, which we call a molecule-extrusion process. The core coordination complex between the deprotonated phosphonic acid group of the molecule and lead polyiodide of perovskite is responsible for both mechanical absorption and electronic charge transfer, and leads to p-type doping of the perovskite film. We created an efficient device with a PCE of 25.86% (reverse scan) and that maintained 96.6% of initial PCE after 1,000 h of light soaking.

10.
Adv Mater ; 35(20): e2211487, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36894169

RESUMEN

High-temperature polymer dielectrics have broad application prospects in next-generation microelectronics and electrical power systems. However, the capacitive energy densities of dielectric polymers at elevated temperatures are severely limited by carrier excitation and transport. Herein, a molecular engineering strategy is presented to regulate the bulk-limited conduction in the polymer by bonding amino polyhedral oligomeric silsesquioxane (NH2 -POSS) with the chain ends of polyimide (PI). Experimental studies and density functional theory (DFT) calculations demonstrate that the terminal group NH2 -POSS with a wide-bandgap of Eg ≈ 6.6 eV increases the band energy levels of the PI and induces the formation of local deep traps in the hybrid films, which significantly restrains carrier transport. At 200 °C, the hybrid film exhibits concurrently an ultrahigh discharged energy density of 3.45 J cm-3 and a high gravimetric energy density of 2.74 J g-1 , with the charge-discharge efficiency >90%, far exceeding those achieved in the dielectric polymers and nearly all other polymer nanocomposites. Moreover, the NH2 -POSS terminated PI film exhibits excellent charge-discharge cyclability (>50000) and power density (0.39 MW cm-3 ) at 200 °C, making it a promising candidate for high-temperature high-energy-density capacitors. This work represents a novel strategy to scalable polymer dielectrics with superior capacitive performance operating in harsh environments.

11.
Small ; 19(28): e2300849, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36988005

RESUMEN

High-concentrated non-flammable electrolytes (HCNFE) in lithium metal batteries prevent thermal runaway accidents, but the microstructure of their solid electrolyte interphase (SEI) remains largely unexplored, due to the lack of direct imaging tools. Herein, cryo-HRTEM is applied to directly visualize the native state of SEI at the atomic scale. In HCNFE, SEI has a uniform laminated crystalline-amorphous structure that can prevent further reaction between the electrolyte and lithium. The inorganic SEI component, Li2 S2 O7 , is precisely identified by cryo-HRTEM. Density functional theory (DFT) calculations demonstrate that the final Li2 S2 O7 phase has suitable natural transmission channels for Li-ion diffusion and excellent ionic conductivity of 1.2 × 10-5 S cm-1 .

12.
J Chem Phys ; 158(7): 074105, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36813713

RESUMEN

Minimum energy path (MEP) search is a vital but often very time-consuming method to predict the transition states of versatile dynamic processes in chemistry, physics, and materials science. In this study, we reveal that the largely displaced atoms in the MEP structures maintain transient chemical bond lengths resembling those of the same type in the stable initial and final states. Based on this discovery, we propose an adaptive semirigid body approximation (ASBA) to construct a physically reasonable initial guess for the MEP structures, which can be further optimized by the nudged elastic band method. Examination of several distinct dynamical processes in bulk, on crystal surface, and through two-dimensional system shows that our transition state calculations based on the ASBA results are robust and significantly faster than those based on the popular linear interpolation and image-dependent pair potential methods.

13.
Mar Environ Res ; 186: 105924, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36812840

RESUMEN

Despite the planktonic ciliate importance in the microzooplankton compartment, their full-depth vertical distribution in the Arctic Ocean was poorly documented as well as the related variations in different water masses. The full-depth community structure of planktonic ciliates was investigated in the Arctic Ocean during summer 2021. The ciliate abundance and biomass decreased rapidly from 200 m to bottom. Five water masses were identified throughout the water column and each one exhibited a unique ciliate community structure. Aloricate ciliates were singled out as the dominant group with average abundance proportion to total ciliates at each depth >95%. Large (>30 µm) and small (10-20 µm) size-fractions of aloricate ciliates were abundant in shallow and deep waters, respectively, which revealed an anti-phase relationship in vertical distribution. Three new record tintinnid species were found during this survey. Pacific-origin species Salpingella sp.1 and Arctic endemic species Ptychocylis urnula occupied the top abundance proportion in the Pacific Summer Water (44.7%) and three water masses (≥38.7%, Mixed Layer Water, Remnant Winter Water, Atlantic-origin Water), respectively. The habitat suitability of tintinnid abundant species was characterised by the Bio-index revealing a distinct death-zone for each species. Variations in survival habitat of abundant tintinnids can be regarded as indicators for the future Arctic climate change. These results provide fundamental data on the microzooplankton response to the intrusion of Pacific waters into the Arctic Ocean upon its rapid warming.


Asunto(s)
Cilióforos , Plancton , Ecosistema , Agua , Regiones Árticas , Océanos y Mares
14.
ACS Nano ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629409

RESUMEN

Composition modulation and edge enrichment are established protocols to steer the electronic structures and catalytic activities of two-dimensional (2D) materials. It is believed that a heteroatom enhances the catalytic performance by activating the chemically inert basal plane of 2D crystals. However, the edge and basal plane have inherently different electronic states, and how the dopants affect the edge activity remains ambiguous. Here we provide mechanistic insights into this issue by monitoring the hydrogen evolution reaction (HER) performance of phosphorus-doped MoS2 (P-MoS2) nanosheets via on-chip electrocatalytic microdevices. Upon phosphorus doping, MoS2 nanosheet gets catalytically activated and, more importantly, shows higher HER activity in the edge than the basal plane. In situ transport measurement demonstrates that the improved HER performance of P-MoS2 is derived from intrinsic catalytic activity rather than charge transfer. Density functional theory calculations manifest that the edge sites of P-MoS2 are energetically more favorable for HER. The finding guides the rational design of edge-dominant P-MoS2, reaching a minuscule onset potential of ∼30 mV and Tafel slope of 48 mV/dec that are benchmarked against other activation methods. Our results disclose the hitherto overlooked edge activity of 2D materials induced by heteroatom doping that will provide perspectives for preparing next-generation 2D catalysts.

15.
ACS Nano ; 17(1): 363-371, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36576433

RESUMEN

Two-dimensional (2D) transition metal dihalides (TMDHs) have been receiving extensive attention due to their diversified magnetic properties and promising applications in spintronics. However, controlled growth of 2D TMDHs remains challenging owing to their extreme sensitivity to atmospheric moisture. Herein, using a home-built nitrogen-filled interconnected glovebox system, a universal chemical vapor deposition synthesis route of high-quality 2D TMDH flakes (1T-FeCl2, FeBr2, VCl2, and VBr2) by reduction of their trihalide counterparts is developed. Representatively, ultrathin (∼8.6 nm) FeCl2 flakes are synthesized on SiO2/Si, while on graphene/Cu foil the thickness can be down to monolayer (1L). Reflective magnetic circular dichroism spectroscopy shows an interlayer antiferromagnetic ordering of FeCl2 with a Neel temperature at ∼17 K. Scanning tunneling microscopy and spectroscopy further identify the atomic-scale structures and band features of 1L and bilayer FeCl2 on graphene/Cu foil.

16.
Adv Mater ; 35(1): e2207580, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36333878

RESUMEN

Polymer film capacitors have been widely used in electronics and electrical power systems due to their advantages of high power densities, fast charge-discharge speed, and great stability. However, the exponential increase of electrical conduction with temperature and applied electric field substantially degrades the capacitive performance of dielectric polymers at elevated temperatures. Here, the first example of controlling the energy level of charge traps in all-organic crosslinked polymers by tailoring molecular structures that significantly inhibit high-field high-temperature conduction loss, which largely differs from current approaches based on the introduction of inorganic fillers, is reported. The polymer network with optimized crosslinking structures exhibits an ultrahigh discharged energy density of 7.02 J cm-3 with charge/discharge efficiencies of >90% at 150 °C, far outperforming current dielectric polymers and composites. The charge-trapping effects in different crosslinked structures, as the origins of the marked improvements in the high-temperature capacitive performance, are comprehensively investigated experimentally and confirmed computationally. Moreover, excellent cyclability and self-healing features are demonstrated in the polymer film capacitors. This work offers a promising pathway of molecular structure design to scalable high-energy-density polymer dielectrics capable of operating under harsh environments.

17.
Front Microbiol ; 13: 941323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966700

RESUMEN

Virioplankton and picoplankton are the most abundant marine biological entities on earth and mediate biogeochemical cycles in the Southern Ocean. However, understanding of their distribution and relationships with environmental factors is lacking. Here, we report on their distribution and relationships with environmental factors at 48 stations from 112.5° to 150°W and 67° to 75.5°S in the Amundsen Sea of West Antarctica. The epipelagic stations were grouped into four clusters based on the virio- and picoplankton composition and abundance. Clusters three and four, which were associated with the ice-edge blooms in the coastal and Amundsen Sea Polynya (ASP) areas, had high abundances of autotrophic picoeukaryotes; this resulted in subsequent high abundances of heterotrophic prokaryotes and viruses. Cluster two stations were in open oceanic areas, where the abundances of autotrophic and heterotrophic picoplankton were low. Cluster one stations were located between the areas of blooms and the oceanic areas, which had a low abundance of heterotrophic prokaryotes and picoeukaryotes and a high abundance of virioplankton. The abundance of viruses was significantly correlated with the abundances of autotrophic picoeukaryotes and Chl-a concentration in oceanic areas, although this reflected a time-lag with autotrophic picoeukaryote and heterotrophic prokaryotes abundances in ice-edge bloom areas. The upwelling of Circumpolar Deep Water (CDW) might have induced the high abundance of autotrophic picoeukaryotes in the epipelagic zone, and the sinking particulate organic carbon (POC) might have induced the high abundance of heterotrophic prokaryotes and virioplankton in the meso- and bathypelagic zones. This study shows that the summer distribution of virio- and picoplankton in the Amundsen Sea of West Antarctica was mainly controlled by upwelling of the CDW and the timing of ice-edge blooms.

18.
Small ; 18(39): e2203494, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36029270

RESUMEN

Potassium-ion batteries (PIBs) have been regarded as a competitive alternative for lithium-ion batteries, owing to the natural abundance, low cost, and similar rocking-chair working mechanism of potassium element. However, it is challenging to simultaneously prepare suitable potassium ion anode materials of low voltage plateau, high capacity, and long cycle life. In this work, onion-like soft carbon (OLSC) of high heteroatom content is prepared by using solvent-sensitive self-assembly properties of asphaltene molecules. The OLSC electrode exhibits a low voltage plateau because of a high degree of graphitization. Meanwhile, it possesses excellent cycling stability and rate capability due to the high stability of the onion-like structure and fast transport of potassium ions, the latter of which is caused by heteroatom-induced expanded interlayers as found by first-principle calculations. Compared with existing carbon materials, the OLSC synthesized in this study exhibits a high reversible capacity of 466 mAh g-1 at 20 mA g-1 , a reversible capacity of 222 mAh g-1 and capacity retention of 95% after 1600 cycles at 1 A g-1 . This work connects the nanostructure of carbon materials and electrochemical performance and provides new insights in improving carbon-based anodes for PIBs.

19.
Adv Mater ; 34(35): e2203220, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35902244

RESUMEN

The emerging nonlayered 2D materials (NL2DMs) are sparking immense interest due to their fascinating physicochemical properties and enhanced performance in many applications. NL2DMs are particularly favored in catalytic applications owing to the extremely large surface area and low-coordinated surface atoms. However, the synthesis of NL2DMs is complex because their crystals are held together by strong isotropic covalent bonds. Here, nonlayered molybdenum phosphide (MoP) with well-defined 2D morphology is synthesized from layered molybdenum dichalcogenides via surface-confined atomic substitution. During the synthesis, the molybdenum dichalcogenide nanosheet functions as the host matrix where each layer of Mo maintains their hexagonal arrangement and forms isotropic covalent bonds with P that substitutes S, resulting in the conversion from layered van der Waals material to a covalently bonded NL2DM. The MoP nanosheets converted from few-layer MoS2 are single crystalline, while those converted from monolayers are amorphous. The converted MoP demonstrates metallic charge transport and desirable performance in the electrocatalytic hydrogen evolution reaction (HER). More importantly, in contrast to MoS2 , which shows edge-dominated HER performance, the edge and basal plane of MoP deliver similar HER performance, which is correlated with theoretical calculations. This work provides a new synthetic strategy for high-quality nonlayered materials with well-defined 2D morphology for future exploration.

20.
Chemphyschem ; 23(10): e202200041, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35286751

RESUMEN

Monolayer, bilayer, and bulk BSi are studied to explore their application potential as anode materials of Li-ion batteries. Structural stability and metallicity are obtained in each case. The Li storage capacities of monolayer and bilayer BSi are 1378 and 689 mAh g-1 , respectively, with average open circuit voltages of 1.30 and 0.47 V as well as Li diffusion barriers of 0.48 and 0.27 eV. Bulk BSi realizes a layered structure in the presence of a small amount of Li and its Li diffusion barrier of 0.48 eV is identical to that of graphite and lower than that of bulk Si (0.58 eV). The Li storage capacity of bulk BSi is found to be 689 mAh g-1 , i. e., much higher than that of graphite (372 mAh g-1 ). The volume expansion turns out to be 33 % and the chemical bonds remain intact at full lithiation, outperforming the 72 % volume expansion of bulk Si at the same capacity and thus pointing to excellent cyclability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA